Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Graeme J. Gainsford,* Cornelis Lensink, Andrew Falshaw and Simon P.H. Mee

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand

Correspondence e-mail: g.gainsford@irl.cri.nz

Key indicators

Single-crystal X-ray study
$T=88 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.016 \AA$
Disorder in solvent or counterion
R factor $=0.053$
$w R$ factor $=0.127$
Data-to-parameter ratio $=9.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Non-classical hydrogen bonding involving bound diazides in an inositol derivative

The inositol derivative 1d-1,2-diazido-1,2-dideoxy-3,4,5,6-tetra-O-benzyl-myo-inositol diethyl ether 0.6 -solvate, $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 0.6 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$, packs with weak and unusual C $\mathrm{H} \cdots \mathrm{N}, \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

The title compound, (I), was prepared as part of a programme aimed at generating new hydrogenation catalyst ligands from inositol molecules (Gainsford et al., 2000; Falshaw et al., 1999).

The asymmetric unit of (I) contains one independent molecule, as shown in Fig. 1, together with a partial-occupancy solvent molecule. The absolute configuration shown is that determined from the chemical synthesis route. There are few cyclohexane structures in the Cambridge Structural Database (CSD, Version 5.26; Allen, 2002) with adjacent azide and O substituents, namely CSD refcodes QAPSAB and QAPSEF (Akai, Nakamura et al., 1999; Akai, Sugita et al., 1999),

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. The solvent molecule has been omitted.

Received 1 December 2005 Accepted 12 December 2005 Online 21 December 2005

Figure 2
Intermolecular interactions (dotted lines) in (I). Contact atoms are shown as spheres. See text for discussion of $\mathrm{O}(\mathrm{C} 60)$. [Symmetry codes are as given in Table 2; additionally: (iv) $\left.\frac{3}{2}-x, 1-y,-\frac{1}{2}+z\right]$.

AZUZAW (Busscher et al., 2004) and IXEVAI (Carballido et al., 2004). The azide angular geometries $\mathrm{C}-\mathrm{N}-\mathrm{N}$ and $\mathrm{N}-$ $\mathrm{N}-\mathrm{N}$ in (I) all fall within the previously observed ranges of $114-119^{\circ}$ and $170-174^{\circ}$, respectively. The cyclohexane ring adopts a chair conformation, with puckering parameters (Cremer \& Pople, 1975) $Q=0.573$ (9) $\AA, \theta=2.6(9)^{\circ}$ and $\varphi=$ 347 (20) ${ }^{\circ}$.

Normally, inositol derivatives are strongly hydrogenbonded, utilizing all available bound groups, e.g. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (GEGWIY; Dietrich et al., 1999) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (HADKIG; Steiner et al., 1993). Although the crystals of (I) were weakly diffracting, the crystal packing stability has again been assisted by definite, though weak, non-classical hydrogen bonding involving $\mathrm{C}-\mathrm{H} \cdots X$ (where X is O or $\mathrm{N}_{\text {azide }}$) and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions, as detailed in Table 2. These forces are sufficient to stabilize a partial molecule of the crystallizing solvent diethyl ether in the crystal structure (estimated as 0.6 of a molecule).

There are two types of $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {azide }}$ interactions in the structure of (I). One was unexpected, being to the inositol ring-bound atom N 4 , while the other two were to the terminal azide atom N3. The former have rarely been observed, according to a CSD search, with only one occurrence noted in SUMRAT (Goulaouic et al., 1993), with $\mathrm{H} \cdots \mathrm{N}=2.67 \AA$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}=131^{\circ}$. There are currently five instances of $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}_{\text {terminal }}$ interactions. Three examples are ZDGPLN (Schmidt et al., 1980), MIYKIO (Barnes et al., 2002) and YASBAW (Humphreys et al., 2005) with $\mathrm{H} \cdots \mathrm{N}$ values of 2.62 , 2.59 and 2.47 Å, respectively, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ angles of 127,146 and 161°, respectively. In the last of these structures, the interaction was apparently insufficient to reduce the disorder found in the azide group.

The $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions listed in Table 2 fit within the normal applied $\mathrm{H} \cdots C g$ limit of $3 \AA$. From the interaction distances, it seems highly likely that there is also a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond to the disordered diethyl ether solvent molecule, with $\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O}(\mathrm{C} 60)=2.49 \AA, \quad \mathrm{C} 26 \cdots \mathrm{O}=$
3.17 (9) \AA and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=138^{\circ}$.

The combined weak interactions give three-dimensional stability to the crystal structure, although it is difficult to show this meaningfully in a packing diagram. Instead, Fig. 2 (MERCURY; Bruno et al., 2002), shows the full interaction commitments of all the groups bound to the inositol as dotted bonds, with the disordered solvent molecule represented by one atom, $\mathrm{O}(\mathrm{C} 60)$ (see Experimental).

Experimental

1d-3,4,5,6-Tetra-O-benzy-myo-inositol ($2.50 \mathrm{~g}, \quad 4.62 \mathrm{mmol}$) was treated with methanesulfonyl chloride ($3.60 \mathrm{ml}, 46.2 \mathrm{mmol}$) in pyridine (20 ml) overnight at room temperature to give the $1,2-$ dimesylate ($3.12 \mathrm{~g}, 97 \%$). The 1,2-dimesylate ($4.88 \mathrm{~g}, 7.00 \mathrm{mmol}$) was then subjected to a displacement reaction using sodium azide (6.83 g , 105 mmol) in dimethylformamide (50 ml) overnight at 383 K to give the 1,2 -diazide ($2.88 \mathrm{~g}, 70 \%$). Crystals of the title compound were isolated from diethyl ether.

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 0.6 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
$M_{r}=655.53$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=9.006(3) \AA$
$b=15.324$ (6) \AA
$c=25.424$ (11) \AA
$V=3509(2) \AA^{3}$
$Z=4$
$D_{x}=1.241 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 895
reflections
$\theta=2.6-14.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=88$ (2) K
Needle, colourless
$0.50 \times 0.22 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Blessing, 1995;
Sheldrick, 1996)
$T_{\text {min }}=0.597, T_{\text {max }}=0.986$
19603 measured reflections

4038 independent reflections
908 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.328$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-10 \rightarrow 11$
$k=-19 \rightarrow 19$
$l=-31 \rightarrow 28$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.127$
$S=0.77$
4038 reflections
432 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0367 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.16 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 3$	$1.429(8)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.482(10)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.194(11)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.180(11)$
C10-O1-C3	$114.4(6)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1$	$172.9(13)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1$	$111.9(10)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$105.8(8)$

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cg} 1^{1}$	1.0	2.64	3.510 (10)	146
$\mathrm{C} 43-\mathrm{H} 43 \cdots \mathrm{Cg} 2^{\text {i }}$	0.95	2.82	3.597 (11)	140
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {i }}$	1.00	2.57	3.514 (10)	157
$\mathrm{C} 30-\mathrm{H} 30 A \cdots \mathrm{~N} 4^{\text {i }}$	0.99	2.53	3.282 (13)	132
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~N} 3^{\text {ii }}$	0.95	2.70	3.353 (16)	126
$\mathrm{C} 20-\mathrm{H} 20 \mathrm{~B} \cdots \mathrm{~N} 3{ }^{\text {iii }}$	0.99	2.65	3.474 (16)	141
Symmetry codes: $x+\frac{1}{2},-y+\frac{1}{2},-z .$		$\frac{1}{2},-z$;	$-x+\frac{3}{2},-y$	+ $\frac{1}{2} ; \quad$ (iii)

All non-H atoms except C23 and C24 were refined with anisotropic displacement parameters. In the absence of significant anomalous scattering effects, Friedel-related reflections were merged. The H atoms of the amino (N 1) and hydroxyl (O1) atoms were positionally refined. All C-bound H atoms were constrained to their expected geometries, with $\mathrm{C}-\mathrm{H}($ methyl $)=0.98 \AA$ and the remaining $\mathrm{C}-\mathrm{H}=$ $1.0 \AA$. For all H atoms, $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom). The disordered diethyl ether was modelled with density at 11 atomic sites using C atoms only and a common $U_{\text {iso }}$; no extra O or H atoms were included for the ether solvent molecule. Models of diethyl ether in two main orientations fit these positions, but no rational model could be constructed. On the basis of the total electron density, about 0.62 of a diethyl ether molecule per asymmetric unit was found.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

The authors thank Professor Ward T. Robinson and Dr J. Wikaira of the University of Canterbury for their assistance.

References

Akai, S., Nakamura, Y., Kaijhara, Y., Yoshimura, J. \& Sato, K. (1999). Anal. Sci. 15, 501-502.
Akai, S., Sugita, N., Yoshimura, J. \& Sato, K. (1999). Anal. Sci. 15, 503-504.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Barnes, J. C., Bimacombe, J. S. \& Paterson, M. J. (2002). Acta Cryst. E58, o5730574.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Busscher, G. F., Groothuys, S., de Gelder, R., Rutjes, F. P. J. T. \& van Delft, F. L. (2004). J. Org. Chem. 69, 4477-4481.

Carballido, M., Castedo, L. \& Gonzalez-Bello, C. (2004). Eur. J. Org. Chem. 3663-3668.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dietrich, H., Espinosa, J. F., Chiara, J. L., Jimenez-Barbero, J., Leon, Y., Varela-Nieto, I., Mato, J.-M., Cano, F. H., Foces-Foces, C. \& Martin-Lomas, M. (1999). Chem. Eur. J. 5, 320-336.

Falshaw, A., Gainsford, G. J. \& Lensink, C. (1999). Acta Cryst. C55, 1353-1355.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gainsford, G. J., Lensink, C., Hart, J. B. \& Falshaw, A. (2000). Acta Cryst. C56, 1396-1398.
Goulaouic, C., Adams, D. R., Chiaroni, A., Riche, C. \& Grierson, D. S. (1993). J. Org. Chem. 58, 3030-3037.

Humphreys, S., Watkin, D. J., Sanjayan, G. J., Tranter, G. E., Edwards, A. A. \& Fleet, G. W. J. (2005). Acta Cryst. E61, o918-o919.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Schmidt, H.-J., Luger, P. \& Paulsen, H. (1980). Acta Cryst. B36, 2646-2650.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Steiner, T., Hinrichs, W., Saenger, W. \& Gigg, R. (1993). Acta Cryst. B49, 708718.

